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COMMENT 

An alternative description of systems with a finite number 
of states 

Ofer Eyal 
Institute for Theoretical Physics, University of Karlsruhe, PO Box 6380, D7500 Karlsruhe, 
West Germany 

Received 27 June 1989. in final form 6 December 1989 

Abstract. We will show how one can give a quantum description for systems having 
( 2 n  + 1)-dimensional anticommuting phase space. The Hilbert space related to these 
systems has 2" dimensions. Among the applications of those systems are spin in three 
dimensions and the d-dimensional relativistic spinning particle. 

1. Introduction 

The standard way to describe the state of a spin is to use spinors and  Pauli matrices 
[ 1,2]. Here, we will show an  alternative for this representation. In the usual description 
by means of a wavefunction, the arguments of this function are the polarised set of 
the phase-space variables, that is the maximal independent and  commuting (with 
grading) set of variables. Usually, a bosonic phase space has an  even dimension and  
every coordinate has a canonical conjugate momentum. However, in the fermionic 
case there could be a situation where a coordinate can be its own canonical conjugate, 
and  the result is the possibility of an  odd-dimensional phase space. We will show how 
one can properly polarise systems with an  odd-dimensional fermionic phase space, 
and  describe the state by a wavefunction. In these systems the states are eigenstates 
of an  operator whose classical analogue is an  even function of the phase-space variables. 

2. Spin and fermionic coordinates 

A simple example is spin in three dimensions, having the Lagrangian 

This Lagrangian describes a classical spin in a magnetic field B. Poisson brackets will 
be defined in such a way that the graded commutator that resulted from them after 
quantisation will give the operator that corresponds to their result. Let the phase space 
be M with dimension D. The result of [ l ]  and [2] t  

t The result of [ 11 is obtained from the definition of [ 2 ]  by using Dirac brackets that takes into account the 
second-class constraints of the first-order Lagrangian. 
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is exact for polynomials of degree 2 at most in the 5s. This is in disagreement with 
the quantum commutators, for example: 

A A A  A 1 1  

{ 5 1 5 2 5 3 r 5 i 5 2 5 3 ) P B = o #  i{515253,515253)= - a i .  

{ A B ,  CBI 

Let the graded commutator be 

where A, B, C are monomials of the i s  ( A  and C have no common 5s). One can 
prove that this graded commutator is non-zero only if B is an odd monomial. To 
identify this result with Poisson brackets one has to include all the derivatives of the 
odd orders, not only the first order (this may lead to a revised variational calculation, 
using variations of higher order). 

One can redefine the Poisson brackets in such a way that they will give the same 
algebra as graded commutators also for polynomials of cubic or higher degree: 

After quantisation of the system described by ( 1 )  we find the following algebra for the 
quantised variables i: 

Let us define 
A A  E, =&(@+a, )  5 2  = 53( 8 - a, 1 ;3 = i 3  (4) 

where 0 and a* anticommute with i3. 
A wavefunction is a function of 8, v' = v'(0) = a + bo. The difficulty here is that 

the action of i, on the wavefunction is not defined in this representation. We have a 
well defined representation for bilinear functions, so this representation is restricted 
only to this kind of observable. The reason that for a three-dimensional phase space 
we can use only one variable for describing the state is that one can always rotate the 
system and make the interaction independent on one of 5; so one variable can be 
decoupled. 

The inner product is defined as 

(v'lO)=[ d 8 d B ~ ( e ) O ( 8 ) e " H ( v ' ~ v ' ) = 1 ~ 1 ~ + / b l ' .  

The Hamiltonian is 

H = $B,(  8 - 8 )  ++B,( e + d )  + B3( ea -$). 

After substitution and comparing powers of 8, one finds: 

Hv' = E q  + E' = a( B f  + B:+ B:).  

When B = B3,  

B B 
2 2 

E =L. Y ; = l  E = -2 * : = e  

When B = B , ,  

1 E=*-- .  Bi 
2 

v'*-- (1 + i o )  -4 
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One can check that the inner product between a eigenfunction of a Hamiltonian that 
is related to one direction of magnetic field with an eigenfunction that related to 
another, is the same as the usual treatment with Pauli matrices, with the equivalence: 

On the classical level Fermi parity is well defined, odd and even parities are related 
to odd and even powers of 6. However, in this representation on the quantum level 
there is no meaning for this parity; generators of rotation, for example: can be even 
of ?dd powers of 8 (:lyically they are even observables); :(e + d e )  = ii183, ii( 8 - d e )  = 
it3[: and Ode -+= 

One observes here that this system has two states and one can use this result for 
describing classically a two-state system. Let the quantum states be: I+), I-?, which 
means that every superposition that is transformed by the group SU(2) is also a state. 
There are two ways to describe the generators of SU(2). 

(i)  GI = $,/a, G2 = I+&/&, G3 = i$l$2 where: {$,, I$,} = S,,. This method describes 
the well known Fermi oscillator [3]. On the classical level, however, one will observe 
a difficulty in identifying these generators with classical observables. Transformations 
of the phase-space functions are generated by Poisson brackets (PB),  and the commu- 
tator between I$, and 6, has no classical analogue because the PB between anticommut- 
ing objects becomes a -i x anticommutator after quantisation; therefore, there is no 
PB classical analogue for the SU(2) algebra. 

(ii) GI = i{&, G. = i & i l ,  iili2 where til, .$} = 8,). Classically, the action of SU(2) 
is described as rotations on the 6 phase space. 

One observes here that two classical systems describe the same quantum system, 
namely, the Fermi oscillator and the spin system, both having the same Hilbert space. 
It seems natural to describe a two-state quantum system by means of three anticommut- 
ing variables, as perhaps a better alternative for the standard Fermi oscillator description 
and the reason is a better understanding of the SU(2) action on the classical variables. 
The other description of a two-state system can be in parallel with the description of 
spin by means of bosonic compact phase space [4]. 

A *  

uk i E y k t t 6 ~ .  

are all even functions on the classical level. 

3. A relativistic, spin-f, charged, massive particle 

In four dimensions, the states are superpositions of four states related to the spinning 
particle and antiparticle, in a given spatial momentum (namely: 

= 4t+)+Pl.l+?+ YlT-?+Sl.l-) 

where t, &, + and - are spin up, spin down, particle and antiparticle respectively). 
The job of the anticommuting variables is to put the wavefunction on a four-dimensional 
column, and this can be done by using two variables, 

The phase-space contains five anticopm?ting variatles, &, t5; On the quantum 
level, these variables obey the algebra: {t,, tu} = v,,,, {t,, i5} = 0, 6 :  =f, and one can 
realise them as the following: 

and 02 .  
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One  can observe that the analogue of the y matrices are the following: yr = 2i&i5. 
The Dirac equation can be expressed by those variables as follows: 

( P P  2i 

P v y r  = -iarl(aR, + e,) + a,,(a,, - 8, ) - idr;'(ag, + e,) - idrcl(dH, - e2) 
9= c~~(x)++,(x)e,++~(x)e,+ V M X ) ~ , ~ ~ .  

+ m 19 = o 
(8) 

Because of charge conservation? 

1 CY 1' + Ip 1' - I y12 - 16 1' = conserved 

the most general transformations group is SU(2,2).  The group SU(2 ,2)  has fifteen 
generators that obey commutation relations (having even parity). The inner product 
that describes the group SU(2,2) is 

(9[@) = d e ,  d e ,  d e 2  de2  @(e,, &)@(e,,  e,) eBIB,-B,B~ 

where 
coefficient. 

locally to S U ( 2 , 2 ) )  by the following identifications$: 

reverses the order in every monomial and takes a complex conjugate of its 

The fifteen generators have the algebra of the conformal group (that is isomorphic 

4. The massless fermion 

This system is characterised by the constraint: 
A A A A  

( i Y I Y 2 Y 3 Y O *  I)**= (451525350* 1 ) 9 *  =o. (10) 

(4e la Ie2az-2e ,a ,  -2e2a2)9-=0*yr-=  +o++12ele2 ( 1 l a )  

Substituting the representation with the 8, one arrives at the following: 

or 

(2+4e ,a le ,az-2e ,a ,  -2e,a2)9+ =o+*+ = ~ , e 1 + + , e 2 .  ( I l b )  

Note that the constraint reduces the phase space by two variables, and as expected 
the reduced phase space is three dimensional as needed for describing the two-state 
system. 

These are examples where the polarisation cuts the phase space M to be a space 
with dimension less than a half of d im(M) .  For a relativistic spinning particle in 
dimension d, one can use [ d / 2 ]  = n Grassmann variables for describing the state, and  
the Hilbert space is 2" dimensional. That means that the phase space has to be 2n + 1 
dimensional as will be explained below. 

+ We exemplify an unphysical situation where the particle is constrained to have one momentum. The right 
charge conservation is related to SU(w, cc). 
$ The conformal algebra is valid on the classical level with the identification of PB by ( 3 ) .  



Systems with a finite number of states 1845 

Expressions for the y matrices are 
A A  

d = 2 n  Y, = 2&l+15 ,  
A A  

i ,#p.  (12b)  
(2i)" 

d = 2 n + l  Y, = (2n)! Ell.12. CI. 1 2 , , 5 1 1 5 1 2  ' . . L, 

These expressions for the y matrices obey the Clifford algebra, as is needed for the 
relation between Dirac and  Klein-Gordon equations. An interesting point is the 
possibility to have a one-particle description of systems with internal symmetry [ 5 ] ,  
by using anticommuting phase-space variables [ 6 ] ,  such that after quantisation the 
state is a function of the polarised set of n variables. 

5. Generalisation 

For a general system that has 2" states one observes that the wavefunction that depends 
on n anticommuting variables is transformed by the SU(2") group, generated by 2'" - 1 
generators. The classical analogue of these generators are observables that are poly- 
nomials on the [ space. Here we will show two methods for describing these generators. 

Method 1 .  Making use of 2n Grassmann variables (4  on the classical level and  #$ on 
the quantum level), for describing all the generators one will use all the powers of 6, 
namely: 

- 1 = ( 1 ) +( 2 )  +. . .+( 2n 2n)  
2n 2n 

One can easily see that the Poisson brackets between two odd monomials fails to 
describe SU(2")  properly because i t  turns out to be an  anticommutator on the quantum 
level. 

Method 2. The phase-space M contains 2n + 1 Grassmann variables. The SU(2")  
generators are built by all the euen powers of [. The number of these generators is 

2 2 n - 1 4  2 n + l  )+(  2 n + 1  )+ . . *+(  2 n + l  2 n  ). 
One can argue that this method gives a correct relation between quantum operators 
and  classical observables, by the representation 

A A A A  

5 2 r - 1  = i 5 Z n T I ( e , + d t )  525 = 5 2 n + l ( e ,  -80 

and its inverse 
A A  A A  A A  A A  

6, = - i 5 2 n + 1 5 ~ , - I  +62nt152,  J, = - i 5 2 n  + I 52,- I - 5 2 n t  I  5 2 1 .  

This gives a one-to-one correspondence amongst operators of 
Related to this formalism, one can find a description of the S U ( N )  group when 

N is not restricted to be 2". One can describe the state as a function of 2 ( N  - 1 )  
anticommuting variables e l ,  e l ,  . . . O N - l ,  O n - l  with the restriction 

- - 

f (  el , , . . . eN - I , JN - ) = f (  el el + J2 e2 + . . . + JN - O N  - ) = f (  e ). 
The SU( N) generators can be expressed by the basis e n d m ,  n, m = 0, 1 , 2 , ,  . . N - 1 
(excluding O0Jo), where J =  c k  a k a k .  This restriction can result by imposing some 
constraints [ 6 ] .  
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